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Energetic proton acceleration from concave targets, the front of which were irradiated with 40 fs laser pulses
with an intensity of 1020 W/cm2, has been studied as a function of the depth of the concave shape. Three kinds
of targets, a triangular concave target, a circular concave target and a parabolic concave target are considered.
When the depth of the concave shape was varied, the peak proton energy showed a maximum. The underlying
mechanism for the existence of a maximum peak proton energy is presented by tracing the proton trajectory. It
is concluded that a parabolic concave target is the best, among the targets considered, for accelerating a proton
beam, since a proton beam from a parabolic concave target goes through the strongest electric field.

DOI: 10.1103/PhysRevE.74.026401 PACS number�s�: 52.38.Kd, 52.50.Jm, 52.65.Rr

I. INTRODUCTION

This paper reports the investigation of the influence of the
depth of the concave shape on energetic proton acceleration
by ultraintense laser interaction.

II. HIGH-ENERGY ELECTRON GENERATION AND
ENERGETIC PROTON ACCELERATION

We consider various types of targets to analyze the
mechanism of proton acceleration in plasma layers with
smooth density gradients. Based on the developed model and
2D particle-in-cell �PIC� simulations, the optimal foil target
shape needed to produce maximal accelerated proton beam is
investigated �1,2,4–9�. Calculations of proton mobility were
carried out for a plasma with the initial density profile shown
in Fig. 1. Simulations were performed for a laser wavelength
� of 1.06 �m, beam spot radius R of 1.5�, laser intensity I of
1020 W/cm2 and pulse duration � of 40 fs. The laser pulse is
linearly polarized, normally incident, and the intensity distri-
bution has a Gaussian shape in space. The maximum electron
density is ne=4nc, where nc is the critical density. The simu-
lation region and number of particles were 118��17� and
2.5�106, respectively.

Proton acceleration depends critically on the efficiency of
the transfer of laser energy into high-energy electrons, since
these electrons are the source of the required strong electro-
static field. Numerical simulations show that in the case of a
short �40 fs� laser pulse with an intensity I of around
1019 W/cm2, the absorption coefficient is independent of the
angle of incidence, with the absorption being about 14% in
the absence of a prepulse. Similar absorption coefficient val-
ues and a plasma density gradient length L dependence of the
absorption coefficient are reported in Ref. �10� for a 130 fs
pulse with an intensity of 4�1019 W �m2/cm2. According
to our simulations �11–13�, as the laser intensity is raised to
1020 W/cm2, the absorption coefficient increases up to 30%,
which demonstrates the influence of proton movement on
absorption at high intensities even for a very short pulse. The
analytical scaling �14,15� of the average electron absorption
coefficient ���g , I� is close to the PIC simulation data,

���g,I� = 0.05 + �0.1 + 0.01�g�I18/�15 + I18�0.8. �1�

Here, I18 is the laser intensity in units of 1018 W/cm2, �g
=L� /c where L is the density gradient length, � is the laser
frequency and c is the velocity of light.

In Fig. 2, the simulation results of the electron absorption
coefficient with the plasma gradient are plotted with open
circles for a slab plasma target. The solid line is the analyti-
cal prediction �Eq. �1�� and the dotted line is the numerical fit
to the simulation results for I=1020 W/cm2.

The absorbed laser energy is transferred to high-energy
electrons, which are ejected from the rear foil surface. These
electrons produce an ambipolar field that causes a proton
beam to be emitted from the rear foil surface. We consider
the direction of a proton beam from the rear foil surface. The
average energy of the high-energy electrons �eh is then cal-
culated from the ponderomotive potential for linear polarized
laser radiation �3,16� as

�eh = mec
2��1 + I18��

2 /2.74 − 1� �2�

where me is the electron mass and �� is in microns ��m�.
The maximal proton energy can be estimated from the fol-
lowing formula �17,18�:

FIG. 1. Target density profile.
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�i = 2�eh�ln��pitef/�2eE + �1 + ��pitef/�2eE�2��2, �3�

where �pi=�4	nee
2 /mi, mi is the proton mass, e is the elec-

tron charge, tef �� and eE=2.718, etc.
The vector potential dependence of the laser beam inten-

sity on the transverse coordinate y is assumed, as is an ex-
ponential drop in skin layer ls inside the plasma,

AL�x,y� = A0 exp�− x/ls − y2/2R2� . �4�

If the laser intensity is flat in time, the full width at half-
maximum �FWHM� of the Gaussian shape is 2R. The maxi-
mum distance h from the foil that the electrons can travel is
easily estimated by equating the electrostatic energy of the
electrons to the total energy of the electrons yielding �19�

h � ��eh/4	nehe2�1/2, �5�

where neh��I� /�D and �D is the Debye radius. At distances
larger than h, the electron bunch will expand radially, form-
ing an electron cloud that continues to expand isotropically.
Hence, h can be regarded as the critical distance from the
surface beyond which the electron cloud can no longer be
referred to as an electron beam.

The angle of proton divergence at the foil rear, which is
determined by the electron cloud and can be estimated from
the following formula:


i =
viy

vi
�

nehe2hR

�i
�

mec
2

�i

R

�
�neh

nc

�eh

mec
2 . �6�

Here, the effect of the magnetic field is neglected compared
to the electric field. In Fig. 3, the angle � of proton motion vs
the proton energy �i at �t=350 �t=197 fs� is shown for the
slab target. Equation �6� gives the angle �=sin−1 
i�4° �at
�eh�2.8 MeV, �i�7.5 MeV from Eqs. �2� and �3�, neh
=0.1nc and R=1.5��, which agrees well with the simulation
result 	�	�5° in Fig. 3.

We can thus conclude that under the conditions used here,
proton ejection is almost normal to the target surface. There-
fore, convergence of the proton beam can be achieved by
rearranging the foil target into a curve y=y�x�. From Ref.

FIG. 2. The electron absorption coefficient vs plasma gradient
length. Open circles represent the simulation results for I
=1020 W/cm2. Analytical prediction obtained using Eq. �1� for I
=1020 W/cm2 is shown by the solid line and the numerical fit to the
simulation results �open circles� by the dotted line.

FIG. 3. The angle �=sin−1�viy /vi� of proton motion vs the pro-
ton energy �i at �t=350.

FIG. 4. �Color online� The geometrical structure of the proton
fronts crossing from both sides of the target cavity showing the
proton jet formation.

FIG. 5. The geometry of the target containing the concave
cavity.
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�15�, the proton trajectory of the particle initially located at
the boundary point x0 ,y�x0� of the surface is

x�y� = x0 + 

y

y�x0� dy
�y�2�x0� − 4
 ln�y�x0�/y�

, �7�

where 
=J+cs
2 /vi

2, J=ZeJi�1−K� / �mivi
3�, cs is the proton

sound velocity, vi is the proton velocity, Z is the charge num-
ber of proton, Ji is the total electric current of the proton
beam and K=neh /ne. The angle of proton movement to
vacuum from the surface y=y�x� at the initial coordinate
�x0 ,y�x0�� is determined by the perpendicular to this surface,

�dy

dx
�

x=x0

= −
1

y��x0�
. �8�

Without interaction in the proton bunch, the proton trajec-
tory is a straight line: y�x�=y�x0�− �x−x0� /y��x0�. The dis-
tance from the foil at which the beam is focused depends on
the foil profile and laser beam parameters. The minimum
radius of the focused beam is achieved when the expression
under the square root in Eq. �7� is zero,

ymin�x0� = y�x0�exp�−
y�2�x0�

4


 . �9�

If y�x0�−ymin�x0��y�x0�, then instead of the exact trajectory
described by Eq. �7� it is convenient to use the Tailor expan-
sion,

y�x� = y�x0� −
�x − x0�
y��x0�

−

�x − x0�2

y�x0�
. �10�

Here, the parameter x0 changes while coexisting with the
shape of the surface y�x0�. The envelope can be found by the
same method but more complicated for the family of exact
trajectories from Eq. �7�.

In Fig. 4, the proton focusing effect was verified at first
using a model in which protons are ejected from a cone-
shaped cutout of angle � on the rear surface of the foil target.
A needle-shaped jet of protons is then created along the cen-
tral axis of the cutout. The formation of the area of increased
density can be explained by geometrical considerations. The
diameter of the focal area a is connected to the diameter of
the cavity W through the relationship a=W / �2 cos2 ��. Dis-

FIG. 6. Spatial distribution of �a� electron density and �b� proton density from a triangular concave target with D=� at �t=350. Spatial
distribution of �c� electron density and �d� proton density from a circular concave target with D=� at �t=350. Spatial distribution of �e�
electron density and �f� proton density from a parabolic concave target with D=� at �t=350.
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tances from the surface of the foil to the focal plane and to
the focal point are b=a / �2	tan 2�	� and hf =W / �2 sin ��, re-
spectively. In real experiments, the target would be located at
this distance for irradiation with protons. Note that in our
simulations the trajectories of the separated protons are prac-
tically rectilinear. Comparing the position of the geometrical
focal point with the calculated focal point yields an estimate
for K, which is the degree of charge compensation in the
proton beam.

Next we analyzed the proton focusing effect by two other
surfaces y= f1,2�x� such as part of a circle and a parabola,
respectively,

f1�x� =���W/2�2 + D2

2D

2

− �x −
�W/2�2 − D2

2D

2

,

f2�x� =
W

2
�1 +

x

D
. �11�

Here W /2 is the radius of the concave cavity and D is its
depth. At D=W /6 and x=−W /12 the minimal distance from
the envelop of the trajectory to the beam axis was calculated
from Eq. �11� as 0.36W for the circle and 0.35W for the
parabola. Thus, the parabolic surface is more effective for
proton beam focusing because of shorter minimal distance
for the parabola than that for the circle. At the Debye radius
of fast electrons close to W /2 these electrons will concen-
trate at the center of the cavity. Its electric charge will devi-
ate the direction of the electrostatic field from the normal and
increases the electric field at the concave center compared to
a plane surface. As a result, the maximal energy of fast pro-
tons and focusing will increase. The dependence of the am-

FIG. 7. Proton beam trajectories and contour of �a� D=0.4� and �b� D=� from a triangular concave target at �t=800. Proton beam
trajectories and contour of �c� D=0.6� and �d� D=� from a circular concave target at �t=800. Proton beam trajectories and contour of �e�
D=0.6� and �f� D=� from a parabolic concave target at �t=800.

OKADA et al. PHYSICAL REVIEW E 74, 026401 �2006�

026401-4



plifying field on the concave angle has a maximum at some
point of its value. Thus, not only beam focusing but also the
maximal proton energy can be optimized with the use of a
tuned �here parabolic� concave shape.

III. ENERGETIC PROTON BUNCH SIMULATION WITH
CONCAVE TARGETS

Proton focusing effects were verified using a model in
which protons are ejected from concave targets, as shown in
Fig. 5. In this simulation, we assume that the length W of the
concave target is constant at 3�, the density gradient length L
is constant at � and the depth D of the concave target is
changed from 0 to �. In Fig. 6, spatial distributions of elec-
tron and proton densities at �t=350 �t=197 fs� are shown
for the triangular concave target, the circular concave target
and the parabolic concave target with D=�, respectively.
From these figures, bunches of protons can be focused at a
given point in space by the curvature of the rear surface of
the foil.

In Fig. 7, proton beam trajectories and contours at �t
=800 �t=449 fs� are shown for the triangular concave target,
the circular concave target and the parabolic concave target,
respectively. It can be obviously seen from these figures that
the proton beam, accelerated by the strong electric field in-
duced by the region of heightened electron density, is col-
lected near the x-axis direction when y /� is around 6–10.
For the triangular concave target, as in Fig. 7�a�, the peak
proton energy is increased by changing D from 0 to 0.4�
because the proton beams go through the stronger electric
field. However, after D=0.4� the peak proton energy de-
creased because the proton beams cross the stronger electric
field, as seen in Fig. 7�b�. For the circular and parabolic
concave targets, the acceleration mechanism of the proton
beam is the same as for the triangular concave target.

IV. CONCLUSIONS

There is a maximum for the peak proton energy as shown
in Fig. 8. For the triangular concave target, the peak proton
energy is maximum at D=0.4� which corresponds to �
�15°. For the circular concave target, the peak proton en-
ergy is maximum at D=0.6� which corresponds to the radius
of the circle r�2.2�. For the parabolic concave target, the
peak proton energy is maximum at D=0.6� which corre-
sponds to a�0.27 for the formula of the parabola of x
=a�y−8��2 /�+18�. These results show that the parabolic
concave target is the best for accelerating a proton beam
among the three targets examined in this study.
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FIG. 8. Peak proton energy vs depth of the concave shape �D /��
from the triangular, circular, and parabolic concave targets at �t
=800.
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